How to Extract Text from Scanned Images with Aspose.OCR
Scanning contracts, agreements, book pages, or old records usually produces image files—not editable text. Aspose.OCR Scan to Text for .NET lets you automate the extraction of structured, searchable text from any scanned document or photo, saving countless hours of manual entry.
Real-World Problem
Paper documents, books, and archives are often stored as images. Extracting their content for digital workflows, compliance, or research can be slow, costly, and prone to error if done manually.
Solution Overview
Aspose.OCR Scan to Text for .NET converts images of printed pages into usable text, handling single-column, multi-column, and complex layouts. The workflow is perfect for digitizing contracts, books, records, and business documents for modern use.
Prerequisites
Ensure you have:
- Visual Studio 2019 or later
- .NET 6.0 or later (or .NET Framework 4.6.2+)
- Aspose.OCR for .NET from NuGet
- Basic C# knowledge
PM> Install-Package Aspose.OCR
Step-by-Step Implementation
Step 1: Install and Configure Aspose.OCR
Add the NuGet package and reference Aspose.OCR:
using Aspose.OCR;
Step 2: Add Your Scanned Images
Load single or multiple image files to be processed.
OcrInput input = new OcrInput(InputType.SingleImage);
input.Add("contract_page1.png");
input.Add("agreement_page2.jpg");
Step 3: Configure Recognition Settings
Tune for document language and layout as needed.
RecognitionSettings settings = new RecognitionSettings();
settings.Language = Language.English;
// For complex or multi-column layouts:
settings.DetectAreasMode = DetectAreasMode.DOCUMENT;
Step 4: Run the Recognition Process
AsposeOcr ocr = new AsposeOcr();
List<RecognitionResult> results = ocr.Recognize(input, settings);
Step 5: Save or Process the Extracted Text
foreach (RecognitionResult result in results)
{
Console.WriteLine(result.RecognitionText);
result.Save("scanned_text.txt", SaveFormat.Text);
// Save to Word or PDF as needed
result.Save("scanned_text.docx", SaveFormat.Docx);
result.Save("scanned_text.pdf", SaveFormat.Pdf);
}
Step 6: Add Error Handling
try
{
AsposeOcr ocr = new AsposeOcr();
List<RecognitionResult> results = ocr.Recognize(input, settings);
// Use results...
}
catch (Exception ex)
{
Console.WriteLine($"Error: {ex.Message}");
}
Step 7: Optimize for Document Layouts
- For books or articles, use DetectAreasMode.DOCUMENT or try DetectAreasMode.AUTO
- Preprocess images (crop, deskew) for best accuracy
- Batch process for large archives
foreach (string file in Directory.GetFiles("./scans", "*.jpg"))
{
input.Add(file);
}
Step 8: Complete Example
using Aspose.OCR;
using System;
using System.Collections.Generic;
class Program
{
static void Main(string[] args)
{
try
{
OcrInput input = new OcrInput(InputType.SingleImage);
input.Add("contract_page1.png");
input.Add("agreement_page2.jpg");
RecognitionSettings settings = new RecognitionSettings();
settings.Language = Language.English;
settings.DetectAreasMode = DetectAreasMode.DOCUMENT;
AsposeOcr ocr = new AsposeOcr();
List<RecognitionResult> results = ocr.Recognize(input, settings);
foreach (RecognitionResult result in results)
{
Console.WriteLine(result.RecognitionText);
result.Save("scanned_text.txt", SaveFormat.Text);
result.Save("scanned_text.docx", SaveFormat.Docx);
result.Save("scanned_text.pdf", SaveFormat.Pdf);
}
}
catch (Exception ex)
{
Console.WriteLine($"Error: {ex.Message}");
}
}
}
Use Cases and Applications
Contract and Agreement Digitization
Quickly digitize legal or business documents for search, archiving, and digital workflows.
Book and Archive Processing
Convert book pages or historical records into searchable, editable formats.
Compliance and Data Extraction
Enable automated compliance checks, auditing, or text extraction from legacy documents.
Common Challenges and Solutions
Challenge 1: Low-Quality Scans or Faded Text
Solution: Use pre-processing or enhance images for better OCR accuracy.
Challenge 2: Multi-Column or Complex Layouts
Solution: Adjust DetectAreasMode and test for best layout handling.
Challenge 3: Batch Digitization
Solution: Use batch processing and resource management for large-scale jobs.
Performance Considerations
- Batch process for speed and scalability
- Use good quality source images
- Dispose OCR objects after use
Best Practices
- Always validate extracted text before automation or archiving
- Use correct recognition settings for document type
- Backup original scans for reference
- Test OCR results on a sample batch before production
Advanced Scenarios
Scenario 1: Multi-Language Document Extraction
settings.Language = Language.French;
Scenario 2: Export to JSON for Integration
foreach (RecognitionResult result in results)
{
result.Save("scanned_text.json", SaveFormat.Json);
}
Conclusion
Aspose.OCR Scan to Text for .NET is the fastest way to convert scanned images and paper documents into usable, editable text—ideal for legal, academic, or enterprise projects.
See more examples and technical details in the Aspose.OCR for .NET API Reference .