How to Convert Multiple DICOM Files into a Single JSON Array
This tutorial demonstrates how to convert multiple DICOM files into a single JSON array using C#. This approach is ideal for data engineers who need to export DICOM metadata for analytics tools, databases, or data pipelines.
Benefits of JSON Array Export
- Bulk Data Processing:
- Import multiple DICOM records into databases in a single operation.
- Analytics Ready:
- JSON arrays can be directly loaded into Python, Spark, or data warehouses.
- Compact Output:
- Single file containing all metadata simplifies data management.
Prerequisites: Preparing the Environment
- Set up Visual Studio or any compatible .NET IDE.
- Create a new .NET 8 console application project.
- Install Aspose.Medical from the NuGet Package Manager.
- Prepare a folder containing multiple DICOM files.
Step-by-Step Guide to Convert Multiple DICOM Files to JSON Array
Step 1: Install Aspose.Medical
Add the Aspose.Medical library to your project using NuGet.
Install-Package Aspose.MedicalStep 2: Include Necessary Namespaces
Add references to the required namespaces in your code.
using Aspose.Medical.Dicom;
using Aspose.Medical.Dicom.Serialization;Step 3: Load Multiple DICOM Files
Load DICOM files from a folder into a collection.
string inputFolder = @"C:\DicomStudies";
string[] dicomPaths = Directory.GetFiles(inputFolder, "*.dcm");
List<DicomFile> dicomFiles = new();
foreach (string path in dicomPaths)
{
dicomFiles.Add(DicomFile.Open(path));
}Step 4: Extract Dataset Array
Build an array of Dataset objects from the loaded files.
Dataset[] datasets = dicomFiles
.Select(dcm => dcm.Dataset)
.ToArray();Step 5: Serialize to JSON Array
Use DicomJsonSerializer.Serialize with the Dataset array.
string jsonArray = DicomJsonSerializer.Serialize(datasets, writeIndented: true);Step 6: Save the JSON Array
Save the JSON array to a file.
File.WriteAllText("dicom_studies.json", jsonArray);
Console.WriteLine($"Exported {datasets.Length} DICOM datasets to JSON array.");Complete Code Example
Here is a complete example demonstrating how to convert multiple DICOM files to a JSON array:
using Aspose.Medical.Dicom;
using Aspose.Medical.Dicom.Serialization;
string inputFolder = @"C:\DicomStudies";
string outputFile = "dicom_studies.json";
// Get all DICOM files
string[] dicomPaths = Directory.GetFiles(inputFolder, "*.dcm");
Console.WriteLine($"Found {dicomPaths.Length} DICOM files.");
// Load all files
List<DicomFile> dicomFiles = new();
foreach (string path in dicomPaths)
{
try
{
dicomFiles.Add(DicomFile.Open(path));
}
catch (Exception ex)
{
Console.WriteLine($"Skipping invalid file: {Path.GetFileName(path)}");
}
}
// Build dataset array
Dataset[] datasets = dicomFiles
.Select(dcm => dcm.Dataset)
.ToArray();
// Serialize to JSON array
string jsonArray = DicomJsonSerializer.Serialize(datasets, writeIndented: true);
// Save to file
File.WriteAllText(outputFile, jsonArray);
Console.WriteLine($"Successfully exported {datasets.Length} datasets to {outputFile}");Example JSON Array Output
The output JSON array looks like this:
[
{
"00080005": { "vr": "CS", "Value": ["ISO_IR 100"] },
"00100010": { "vr": "PN", "Value": [{ "Alphabetic": "DOE^JOHN" }] },
"00100020": { "vr": "LO", "Value": ["12345"] }
},
{
"00080005": { "vr": "CS", "Value": ["ISO_IR 100"] },
"00100010": { "vr": "PN", "Value": [{ "Alphabetic": "SMITH^JANE" }] },
"00100020": { "vr": "LO", "Value": ["67890"] }
}
]Processing Large Datasets with LINQ
For better memory management with large datasets, use LINQ projections:
using Aspose.Medical.Dicom;
using Aspose.Medical.Dicom.Serialization;
string inputFolder = @"C:\LargeDicomArchive";
string outputFile = "large_export.json";
// Process files lazily to manage memory
Dataset[] datasets = Directory.GetFiles(inputFolder, "*.dcm")
.Select(path =>
{
try
{
return DicomFile.Open(path).Dataset;
}
catch
{
return null;
}
})
.Where(ds => ds != null)
.ToArray()!;
string jsonArray = DicomJsonSerializer.Serialize(datasets, writeIndented: true);
File.WriteAllText(outputFile, jsonArray);
Console.WriteLine($"Exported {datasets.Length} datasets.");Adding Progress Reporting
For large batches, add progress reporting:
using Aspose.Medical.Dicom;
using Aspose.Medical.Dicom.Serialization;
string inputFolder = @"C:\DicomStudies";
string[] dicomPaths = Directory.GetFiles(inputFolder, "*.dcm");
List<Dataset> datasets = new();
int processed = 0;
int total = dicomPaths.Length;
foreach (string path in dicomPaths)
{
try
{
DicomFile dcm = DicomFile.Open(path);
datasets.Add(dcm.Dataset);
}
catch (Exception ex)
{
Console.WriteLine($"Error: {Path.GetFileName(path)} - {ex.Message}");
}
processed++;
if (processed % 100 == 0 || processed == total)
{
Console.WriteLine($"Progress: {processed}/{total} ({processed * 100 / total}%)");
}
}
string jsonArray = DicomJsonSerializer.Serialize(datasets.ToArray(), writeIndented: true);
File.WriteAllText("export.json", jsonArray);
Console.WriteLine($"Export complete: {datasets.Count} datasets.");Importing JSON Array into Analytics Tools
Python Example
import json
import pandas as pd
# Load the exported JSON array
with open('dicom_studies.json', 'r') as f:
dicom_data = json.load(f)
# Convert to DataFrame for analysis
df = pd.json_normalize(dicom_data)
print(df.head())Loading into MongoDB
// Using mongoimport
// mongoimport --db medical --collection studies --jsonArray --file dicom_studies.json
Memory Considerations
When working with very large datasets:
- Process in Batches: Split files into batches of 100-500 files.
- Stream Output: Use stream-based serialization for very large arrays.
- Dispose Files: Ensure DicomFile objects are disposed after extracting datasets.
// Batch processing example
int batchSize = 100;
string[] allFiles = Directory.GetFiles(inputFolder, "*.dcm");
int batchNumber = 0;
for (int i = 0; i < allFiles.Length; i += batchSize)
{
string[] batch = allFiles.Skip(i).Take(batchSize).ToArray();
Dataset[] datasets = batch
.Select(path => DicomFile.Open(path).Dataset)
.ToArray();
string batchJson = DicomJsonSerializer.Serialize(datasets, writeIndented: true);
File.WriteAllText($"batch_{batchNumber++}.json", batchJson);
}Additional Information
- JSON array format is ideal for bulk imports into NoSQL databases.
- Consider compressing large JSON files for storage efficiency.
- For streaming scenarios, consider using NDJSON (newline-delimited JSON) format instead.
Conclusion
This tutorial has shown you how to convert multiple DICOM files into a single JSON array in C# using Aspose.Medical. This approach enables efficient bulk data export for analytics, database imports, and data pipeline integration.